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We revisit the electromagnetic heat transfer between a metallic nanoparticle and a highly conductive metallic
semi-infinite substrate, commonly studied using the electric dipole approximation. For infrared and microwave
frequencies, we find that the magnetic polarizability of the particle is larger than the electric one. We also find
that the local density of states in the near field is dominated by the magnetic contribution. As a consequence,
the power absorbed by the particle in the near field is due to dissipation by fluctuating eddy currents. These
results show that a number of near-field effects involving metallic particles should be affected by the fluctu-
ating magnetic fields.
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I. INTRODUCTION

A lot of attention has recently been devoted to the inter-
action between nano-objects, such as atoms, nanoparticles or
atomic force microscopy tips, and surfaces, which is medi-
ated by fluctuating thermal fields. A great variety of phenom-
ena such as Casimir-Polder forces,1–4 friction forces,5–9 and
near-field heat transfer10–26 is governed by the associated sto-
chastic thermal currents. A common assumption is that the
electric dipole approximation can be used to model the
nano-object.18–25 Here, we revisit the heat transfer between a
surface and a metallic nanoparticle. We find that the leading
mechanism is near-field induction heating due to Joule dissi-
pation of eddy currents in the particle. The large currents are
produced by time-dependent infrared magnetic fields that
dominate the energy density near a metallic surface. We find
a different distance dependence of the flux for noble metals
as compared with the case of polar materials. Our work may
find applications on local heating for data storage27 and
lithography.20,28

All the phenomena previously cited have to be described
in the framework of fluctuational electrodynamics introduced
by Rytov et al.29 It is known that the radiative heat flux
between two bodies10–19 can be dramatically enhanced when
their separation distance becomes smaller than 10 �m. It was
found that evanescent waves yield the leading contribution to
the heat flux. Experiments have been reported demonstrating
these effects.30–32 It has also been predicted that this heat
transfer could have a very narrow energy spectrum16,17,21 due
to surface electromagnetic waves. A possible application to
design near-field energy converters has been studied.33

The electric dipole moment of a sphere with radius R and
dielectric constant �r is generally assumed to give the leading
contribution18–25 because it varies like �R /��3, whereas the
next term in the Mie expansion varies as �R /��5 �� is the
wavelength in vacuum�.34 In this work, we will show that the
interaction between the magnetic dipole and the large mag-
netic fields in the near field may give the dominant contribu-
tion to the heat transfer.

In the next section, we compare the absorption cross sec-
tion of the electric and magnetic dipole moments. The third
section is devoted to the analysis of the electric and magnetic

energy densities in the near field of a metal-vacuum inter-
face. The final section analyzes the heat transfer and dis-
cusses the physical mechanism.

II. ABSORPTION BY A METALLIC NANOPARTICLE

Let us first compute the power absorbed by a small me-
tallic particle. In what follows, we will use an isotropic, ho-
mogeneous, and local form of the complex dielectric con-
stant. To lowest order in R /�,34 the particle can be described
by its electric dipolar moment p� . We define a complex polar-
izability �E,

p� = �E�0E� , �1�

where �0 is the dielectric vacuum permittivity and E� is the
external electric field. Another contribution is given by the
magnetic dipolar moment m� characterized by its magnetic
polarizability �H,

m� = �HH� , �2�

where H� is the external magnetic field. Higher multipoles
can be neglected if ��r��1 and R /��1. The contributions of
the electric and magnetic dipoles to the power dissipated in
the particle at a positive frequency � are given by35,36

Pabs
E ��� = 2� Im��E��0

��E� �2�
2

, �3�

Pabs
M ��� = 2� Im��H��0

��H� �2�
2

, �4�

where �0 is the magnetic permeability in vacuum. �E and �H
can be found in Ref. 37,

�E = 4	R3�r − 1

�r + 2
, �5�

�H =
2	

15
R3�2	R

�
�2

��r − 1� , �6�

where �r is the relative dielectric permittivity.
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Here, we do not take into account the diamagnetism of the
material. Instead, the magnetic dipole moment is due to eddy
currents in the particle. The polarizabilities are calculated
assuming that R is much smaller than the skin depth 
. A
different form35 can be derived when dealing with particles
such that 
�R��. In what follows, we should keep in mind
that the dipole model is a fair approximation, provided that
the distance d between the center of the particle and a surface
is much larger than R. Note that we have used for simplicity
the extinction cross section of the electric dipole. The exact
form of the absorption cross section is discussed in Ref. 38.
The difference for a metallic nanoparticle is negligible.

As seen from Eqs. �3� and �4�, the absorption is the prod-
uct of two terms, the imaginary part of the polarizability and
the local density of energy. We shall show that for metallic
nanoparticles at low frequencies, both terms are larger for the
magnetic contribution. Let us first analyze the role of the
polarizability. It appears from Eqs. �3�–�6� that for values of
the dielectric constant on the order of unity, the electric di-
pole contribution to losses is much larger than the magnetic
one because R /��1. Yet, for values of �r such that ��r��1,
as it is the case for metals at low frequencies, the magnetic
dipole may provide the leading contribution. The physical
reason is that the magnetic fields are continuous at an inter-
face so that they can penetrate in the material. By contrast,

the electric field in a spherical particle E� int is related to the

external electric field by E� int= �3 / ��r+2�	E� ext. Surface
charges induced at the interface prevent the electric field to
penetrate efficiently in the metallic particle. This screening
effect takes place on a length scale given by the Thomas-
Fermi length. It does not depend on the skin depth.

We consider a nonmagnetic metallic particle characterized
by a Drude model �r=1−�p

2 / ��2+ i���, where �p is the
plasma frequency and � is the damping coefficient. To ac-
count for the confinement effects, the bulk dielectric constant
�r �Ref. 39� is corrected by modifying the damping constant
�=�0+AvF /R, where �0 is the bulk damping coefficient, vF
the Fermi velocity, and A a sample-dependent coefficient.
Figure 1 shows Im��E� and Im��H� as a function of circular
frequency for two gold spheres with radii R=5 nm and R
=10 nm. It is seen that the electric polarizability is larger
than the magnetic polarizability at optical frequencies. As
explained before, this is no longer the case at low frequen-
cies �typically smaller than ��, where Im��H� is larger than
Im��E�.

III. LOCAL DENSITY OF ENERGY NEAR A METALLIC
SURFACE

To derive the energy absorbed by a particle in the vicinity
of an interface, we need to consider the local densities of

energy �0

��E� �2�

2 and �0

��H� �2�

2 . In a vacuum, both contributions
are equal. The energy per unit volume U�z ,�� at a distance z
from the interface increases dramatically in the near field due
to the presence of evanescent waves, as discussed in Refs. 36
and 40. U�z ,�� is the product of the local density of states
�LDOS� ��z ,�� by the mean energy of a mode �� ,T�
=�� / �exp��� /kBT�−1	, where 2	� is the Planck constant,

kB is the Boltzmann constant, and T is the temperature of the
substrate. The final expression for the evanescent part of the
LDOS36,40 is the sum of the following four contributions:

�s
E�z,�� = �v


�/c

+� dK

2��0�
cK

�
Im�rs�e−2�0�z, �7�

�s
M�z,�� = �v


�/c

+� dK

2��0�
cK

�
f�K,��Im�rs�e−2�0�z, �8�

�p
E�z,�� = �v


�/c

+� dK

2��0�
cK

�
f�K,��Im�rp�e−2�0�z, �9�

�p
M�z,�� = �v


�/c

+� dK

2��0�
cK

�
Im�rp�e−2�0�z, �10�

where the superscripts E and M denote the electric and mag-
netic evanescent components, c is the light velocity in
vacuum, �v���=�2 /	2c3 is the vacuum density of states,

f�K ,��=2� cK
�

�2−1, rs=
�0−�1

�0+�1
and rp=

�r1�0−�1

�r1�0+�1
are the Fresnel

TE and TM reflection factors, and the complex number �i
=�i�+ i�i� is defined as the perpendicular part of the wave
vector at a frequency �: K2+�i

2=�ri
�2

c2 , where i=0 in vacuum
��r0=1� and i=1 in the metal. We have here neglected non-
local effects, but it could be taken into account in the optical
reflection coefficients.

In Fig. 2, we plot the LDOS versus the frequency � for
d=30 nm. The first conclusion is that the contribution due to
the evanescent waves dominates. The second conclusion is
that the s-polarized magnetic contribution is dominant for
frequencies below �M =2.4�1014 s−1, which are relevant for
heat transfer at 300 K. Indeed, in the expression of the en-
ergy density U�z ,��, �� ,T� acts as a temperature-
dependent frequency filter. At a given temperature, we define
the cutoff frequency �M by �0

�M�� ,T�d� /�0
��� ,T�d�

FIG. 1. �Color online� Imaginary parts of the electric and mag-
netic polarizabilities of a gold sphere ��p=1.71�1016 s−1, �0

=4.05�1013 s−1, vF=1.2�106 ms−1, and A=1�. For ���,

Im��H��
4	R5�p

2

15c2
�

� , and for ���p, Im��E�� 12	R3�

�p
2 �.
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=99 /100. Frequencies much higher than �M are not relevant
for heat transfer. We note that the p-polarized contribution
associated with the surface plasmon polariton dominates at
optical frequencies but does not contribute significantly in
the infrared.

The dominant contribution of magnetic energy can be un-
derstood by considering the analytical expressions of �s

M �Eq.
�8�	 and �p

E �Eq. �9�	. Both expressions are exactly symmet-
ric, involving the same factor f�K ,�� and the imaginary part
of the reflection factor, respectively, Im�rs� and Im�rp�. The
physical origin of the factor f�K ,�� lies in a fundamental
difference of structure between propagating and evanescent
waves. It is interesting to see why the magnetic energy domi-
nates the electric energy. Indeed, in a vacuum, the electric
and the magnetic energy are equal. This is no longer true for
an s-polarized evanescent wave close to an interface.

Let us denote the wave vector as follows:

k0
� = Kex

� − �ez
� , �11�

where K and � are the interface parallel and perpendicular

wave vectors and ex
� and ez

� are the unit vectors. The Helm-
holtz equation in a vacuum yields K2+�2=�2 /c2. For an
s-polarized field, the electric field is given by

E� = �0,E,0� , �12�

and the magnetic field follows from the Maxwell-Faraday

equation in vacuum �curl� E� =− �
�tB

� �

B� =
E

�
�− �,0,K� . �13�

It follows that �B� �2=B� B� *= �E�2

�2 ����2+K2�. For a propagating
wave, this yields the following well-known result:

�B� � =
�E� �
c

, �14�

whereas for an evanescent wave, � is purely imaginary so
that ���2=−�2. We get

c�B� �

�E� �
=2

K2

k0
2 − 1. �15�

For evanescent waves, K�k0, so we find that the magnetic
energy stored in an s-polarized evanescent wave is much
larger than the electric energy. We have plotted in Fig. 3 the

function cB
E =f�K ,��=���2+K2

k0
2 for different frequencies. It

is seen that the density of energy, which is proportional to the
density of states, is driven by the magnetic contribution.

Now, a similar reasoning can be done for p-polarized

waves. In this case, the inverse ratio �E� � /c�B� � is also equal to
f�K ,���2K /k0, which shows that the electric field domi-
nates in this case. Near field is thus always dominated by an
s-polarized evanescent magnetic field and a p-polarized eva-
nescent electric field. The relative weight of both contribu-
tions is then given by the values of the imaginary part of the
reflection factors. Since Im�rs� is larger than Im�rp� for a
metal at low frequencies, the s-polarized contribution to the
LDOS dominates, as seen in Fig. 2. As a consequence, the
energy density is dominated by its s-polarized magnetic con-
tribution.

IV. HEAT TRANSFER BETWEEN AN INTERFACE AND A
NANOPARTICLE

We now combine the results obtained for the dependence
of the polarizabilities and for the energy density to derive the
power absorbed by a small particle, as given by Eqs. �3� and
�4�. Although heat transfer between a small particle and a
substrate in the near field has only been calculated using the
electric dipolar contribution,18–25 the results shown in Fig. 1
�large magnetic dipole moment� and in Fig. 2 �large mag-
netic density of states� clearly indicate that the magnetic con-
tribution must be taken into account, as suggested in Ref. 32.
Figure 4 shows the radiative power

Prad = 

�=0

+�

�Pabs
E ��� + Pabs

M ���	d� �16�

dissipated by the substrate in the small particle �R=5 nm�.
The key result observed in Fig. 4 is that the heat transfer is
dominated by the s-polarized magnetic contribution. The
magnetic contribution can be larger than the electric dipolar

FIG. 2. �Color online� Contributions of the evanescent waves to
the local density of states �LDOS� at d=30 nm of a gold-vacuum
plane interface when using a bulk Drude dielectric constant. The
magnetic and electric propagating contributions are also plotted
�they are equal�.

FIG. 3. �Color online� Ratio c�B� �
�E� �

for s-polarized evanescent
waves.
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contribution by 3 orders of magnitude. The reason is that
heat is dissipated essentially by eddy currents. An important
result is the dependence of the heat flux with distance. The
magnetic LDOS varies asymptotically as 1 /z and the electric
LDOS as 1 /z3.36,40 For gold, these behaviors are valid at
very small distances �below 20 nm�. Hence, there is no
simple distance dependence for the absorbed power, as seen
in Fig. 4.

The above analysis can be summarized by the following
scenario. Random currents flowing parallel to the interface
can excite the s-polarized evanescent electromagnetic fields
at infrared frequencies. As explained above, the associated
magnetic fields take large values in the near field. They are

continuous across a vacuum-metal interface so that they pen-
etrate efficiently in the nanoparticle and can generate large
eddy currents. These currents are dissipated through the
Joule effect. Thus, thermal heat transfer appears to be due to
near-field induction heating. Radiative heat transfer between
two parallel metallic surfaces can also be explained with a
similar scenario.41

V. CONCLUSION

In summary, we have shown that the heat transfer be-
tween a noble metallic nanoparticle and a noble metallic sur-
face is dominated by the magnetic contribution. Heat is
mainly dissipated by fluctuating eddy currents. The widely
used electric dipole approximation is valid for dielectrics but
breaks down for metals. As a consequence, the 1 /z3 depen-
dence of the flux between dielectrics is not valid for metals.
A number of other effects due to thermal radiation �e.g.,
forces, friction� between metallic bodies are expected to be
driven by their magnetic contribution, even if the media are
nonmagnetic. We note that the heat exchanged by two me-
tallic nanoparticles separated by a submicronic distance42

should be driven as well by the interaction between their
magnetic dipoles.

ACKNOWLEDGMENTS

We thank Karl Joulain and Carsten Henkel for useful dis-
cussions. We acknowledge the support of the Agence Natio-
nale de la Recherche under Contract No. ANR06-NANO-
062-04.

*olivier.chapuis@centraliens.net
1 H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, Phys.

Rev. Lett. 83, 5467 �1999�.
2 C. Henkel, K. Joulain, J.-Ph. Mulet, and J.-J. Greffet, J. Opt. A,

Pure Appl. Opt. 4, S109 �2002�.
3 M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 95,

113202 �2005�.
4 J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Strin-

gari, and E. A. Cornell, Phys. Rev. Lett. 98, 063201 �2007�.
5 I. Dorofeyev, H. Fuchs, G. Wenning, and B. Gotsmann, Phys.

Rev. Lett. 83, 2402 �1999�.
6 J. R. Zurita-Sanchez, J.-J. Greffet, and L. Novotny, Phys. Rev. A

69, 022902 �2004�.
7 A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 94, 086104

�2005�.
8 A. I. Volokitin, B. N. J. Persson, and H. Ueba, Phys. Rev. B 73,

165423 �2006�.
9 G. V. Dedkov and A. A. Kyasov, Europhys. Lett. 78, 44005

�2007�.
10 E. G. Cravalho, C. L. Tien, and R. P. Caren, J. Heat Transfer 89,

351 �1967�.
11 D. Polder and M. Van Hove, Phys. Rev. B 4, 3303 �1971�.
12 R. P. Caren, Int. J. Heat Mass Transfer 17, 755765 �1974�.
13 M. L. Levin, V. G. Polvie, and S. M. Rytov, Sov. Phys. JETP 6,

1054 �1980�.
14 J. J. Loomis and H. J. Maris, Phys. Rev. B 50, 18517 �1994�.
15 A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 69, 045417

�2004�.
16 J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Microscale

Thermophys. Eng. 6, 209 �2002�.
17 C. H. Park, H. A. Haus, and M. S. Weinberg, J. Phys. D 35, 2857

�2002�.
18 I. A. Dorofeyev, J. Phys. D 31, 600 �1998�.
19 A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 63, 205404

�2001�.
20 J. B. Pendry, J. Phys.: Condens. Matter 11, 6621 �1999�.
21 J. P. Mulet, K. Joulain, R. Carminati, and J. J. Greffet, Appl.

Phys. Lett. 78, 2931 �2001�.
22 I. A. Dorofeev, Tech. Phys. Lett. 23, 109 �1997�.
23 J. B. Pendry, J. Mod. Opt. 45, 2389 �1998�.
24 A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 65, 115419

�2002�.
25 G. V. Dedkov and A. A. Kyasov, Tech. Phys. Lett. 28, 50 �2002�.
26 C. Henkel and M. Wilkens, Europhys. Lett. 47, 414 �1999�.
27 H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, Appl.

Phys. Lett. 84, 810 �2004�.
28 A. Chimmalgi, T.-Y. Choi, C. P. Grigoropoulos, and K.

Komvopoulos, Appl. Phys. Lett. 82, 1146 �2003�.

FIG. 4. �Color online� Radiative power dissipated in the gold
particle �radius R=5 nm� by the semi-infinite planar gold substrate
at 300 K, and the asymptotic behaviors.

CHAPUIS et al. PHYSICAL REVIEW B 77, 125402 �2008�

125402-4



29 S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of
Statistical Radiophysics �Springer, Berlin, 1989�, Vol. 3.

30 C. M. Hargreaves, Phys. Lett. 30A, 491 �1969�.
31 W. Müller-Hirsch, A. Kraft, M. T. Hirsch, J. Parisi, and A. Kittel,

J. Vac. Sci. Technol. A 17, 1205 �1999�.
32 A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and

M. Holthaus, Phys. Rev. Lett. 95, 224301 �2005�.
33 M. Laroche, R. Carminati, and J.-J. Greffet, J. Appl. Phys. 100,

063704 �2006�, and references therein.
34 H. C. Van de Hulst, Light Scattering by Small Particles �Dover,

New York, 1981�.
35 E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynam-

ics of Continuous Media, 2nd ed. �Butterworth-Heinemann,
London, 1984�, Chap. 7.

36 K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Gref-
fet, Surf. Sci. Rep. 57, 59 �2005�.

37 G. W. Mulholland, C. F. Bohren, and K. A. Fuller, Langmuir 10,
2533 �1994�.

38 R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, Opt.
Commun. 261, 368 �2006�.

39 H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, Phys.
Rev. B 48, 18178 �1993�.

40 K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Phys. Rev.
B 68, 245405 �2003�.

41 P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain and J.-J. Greffet,
Phys. Rev. B 77, 035431 �2008�.

42 G. Domingues, S. Volz, K. Joulain, and J.-J. Greffet, Phys. Rev.
Lett. 94, 085901 �2005�.

NEAR-FIELD INDUCTION HEATING OF… PHYSICAL REVIEW B 77, 125402 �2008�

125402-5


